Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int. j. morphol ; 38(5): 1463-1472, oct. 2020. graf
Article in English | LILACS | ID: biblio-1134463

ABSTRACT

SUMMARY: The vomeronasal organ (VNO) is an accessory organ involved on the olfactory pathway, that detects pheromones and emits signals in order to modulate social and reproductive behavior. The VNO stem cells replace neurons throughout life. The aim of this study was to isolate and characterize cells derived from the vomeronasal organ from New Zealand rabbits. Five male rabbits with 120 days were used for cell isolation and culture. Results: VNO-derived cells presented labelling for proliferation (PCNA), undifferentiated profile (Nanog), neuronal (GFAP), mesenchymal stem cells (CD73, CD90 and CD105 and Stro-1). Also, presence of cytoskeletal (Vimentin, b-tubulin and CK-18) and absence of hematopoietic markers (CD34, CD117 and CD45) both by immunofluorescence and flow cytometry. By PCR it was possible to verify the expression of some undifferentiated profile (Oct-4), neuronal (Nestin) and mesenchymal (CD73, CD105 and Vimentin) genes. Functionally, VNO-derived cells differentiate in vitro into adipocytes, osteocytes and chondrocytes, and presented no tumorigenic potential when injected to Balb/c nu/nu mice. In conclusion, the rabbit VNO-derived cells have a profile that could be supportive to VNO olfactory/neuroreceptor epithelium by delivering factors to epithelial turnover or even by differentiation into epithelial cells to replacement of commissural epithelium.


RESUMEN: El órgano vomeronasal (OVN) es un órgano accesorio de la vía olfatoria, que detecta feromonas y emite señales que afectan la modulación del comportamiento social y reproductivo. Las células madre OVN reemplazan las neuronas durante toda la vida. El objetivo de este estudio fue aislar y caracterizar células derivadas del órgano vomeronasal de conejos raza Nueva Zelanda. Para el aislamiento y el cultivo celular se utilizaron cinco conejos machos con una edad de 120 días. Las células del OVN presentaron etiquetado para la proliferación (PCNA), un perfil indiferenciado (Nanog), neuronal (GFAP), células madre mesenquimales (CD73, CD90 y CD105 y Stro-1). Además, se ob- servó presencia de citoesqueleto (Vimentina, β-tubulina y CK-18) y ausencia de marcadores hematopoyéticos (CD34, CD117 y CD45) tanto por inmunofluorescencia como por citometría de flujo. Me- diante PCR fue posible verificar la expresión de algunos genes de perfil indiferenciado (Oct-4), neuronal (Nestin) y mesenquimatoso (CD73, CD105 y Vimentin). Las células derivadas del OVN se diferencian in vitro en adipocitos, osteocitos y condrocitos, y no presentan un potencial tumorigénico al ser infiltrados en ratones Balb / c nu / nu. En conclusión, las células derivadas de OVN de conejo tienen un perfil que podría ser compatible con el epitelio olfatorio / neurorreceptor de OVN transmitiendo factores al recambio epitelial o incluso mediante la diferenciación en células epiteliales para reemplazar el epitelio comisural.


Subject(s)
Animals , Rabbits/anatomy & histology , Vomeronasal Organ/cytology , Mesenchymal Stem Cells/physiology , Olfactory Bulb/cytology , Stem Cells/physiology , Olfactory Mucosa/cytology , Polymerase Chain Reaction , Fluorescent Antibody Technique , Flow Cytometry , Neurons/physiology
2.
Pesqui. vet. bras ; 38(10): 1999-2005, out. 2018. ilus
Article in Portuguese | LILACS, VETINDEX | ID: biblio-976370

ABSTRACT

O órgão vomeronasal é um receptor químico capaz de detectar feromônios e por essa razão está envolvido nos comportamentos reprodutivos, sociais e de defesa. A reprodução de pacas tem se destacado na área de comercialização de carne e para fins conservacionistas e de pesquisa, como modelo experimental. Diante da necessidade do detalhamento da morfologia do sistema olfatório secundário, o sistema vomeronasal, foi descrita a anatomia macroscópica, anatomia microscópica e topografia do órgão vomeronasal (OVN) da paca (Cuniculus paca). Foram utilizadas cinco pacas adultas do Setor de Animais Silvestres da FCAV, UNESP, Jaboticabal-SP. Após a eutanásia dos animais, a solução fixadora de formaldeído 10% em tampão fosfato de sódio (PBS) foi perfundida sistemicamente (via aorta ascendente). Mediante dissecação, o OVN foi localizado e individualizado para a descrição topográfica e anatômica. Posteriormente, foi isolado e incluído em parafina plástica. Cortes de cinco micrômetros foram corados com Hematoxilina-Eosina. O OVN encontra-se no assoalho da cavidade nasal em ambos os lados da base do septo nasal e está relacionado com o osso vômer, processos palatinos dos ossos pré-maxilar e maxilar. Rostralmente, comunica-se com a cavidade oral estabelecendo relação com a papila incisiva. É um órgão par com superfície irregular, levemente elíptico em secção transversal, apresentando coloração amarronzada repleta de vasos sanguíneos. À microscopia de luz, notou-se presença da cartilagem vomeronasal. O órgão é revestido por um epitélio não sensorial e neurossensorial.(AU)


The vomeronasal organ is a chemical receptor capable of detecting pheromones and for this reason is involved in reproductive, social and defense behaviors. The breeding of pacas has been highlighted in commercialization of meat and for conservation and research purposes, as an experimental model. Regarding the necessity of detailing the morphology of the secondary olfactory system, the vomeronasal system, the macroscopic anatomy, microscopic anatomy and topography of the vomeronasal organ (OVN) was described. Five adult pacas, from the wild animal Sector at FCAV, Unesp, Jaboticabal, SP were used. After the euthanasia, it was perfused 10% formaldehyde solution by ascendent aorta. The OVN was dissected for topographic and anatomical descriptions. Then, it was included in plastic paraffin. Five micrometres sections were collected and stained with hematoxylin and eosin. The OVN is located on the floor of the nasal cavity in both sides of the base of nasal septum and it was related to the vomer, palatine process of the premaxilar and maxilar bones. In rostral aspect, it has a communication with the oral cavity and with the incisive papilla. It is a paired organ with irregular surface. In transversal section is slight elliptical with brownish colour similar to a sponge full of blood vessels. By light microscopy, it was observed the vomeronasal cartilage. The organ is covered with non-sensorial and neurossensorial epithelia.(AU)


Subject(s)
Animals , Vomeronasal Organ/anatomy & histology , Cuniculidae/anatomy & histology
3.
Indian J Biochem Biophys ; 2013 Jun; 50(3): 242-246
Article in English | IMSEAR | ID: sea-147311

ABSTRACT

The rodent preputial gland is one of the major sources of odours and is reported to be involved in several behavioural activities. However, how the preputial gland initiates the olfactory response to manifest the effects is not known. Olfactory receptor neurons (ORNs) present in the olfactory epithelium are involved in the perception of odorant/pheromonal compounds. In the present study, the response of rat ORNs to preputial gland extract was evaluated by calcium imaging analysis. We found that some rat ORNs responded to the preputial gland extract by exhibiting an intracellular calcium response. By contrast, the ORNs did not respond at all to the foot pad extract (control). The results indicated that the substances contained in the preputial gland might interact with a type of receptor expressed in the female rat ORNs, suggested to manifest the behavioural responses, such as social and sexual interactions. This study provided the first evidence of activation of ORNs by the preputial gland extract.


Subject(s)
Action Potentials/physiology , Animals , Calcium Signaling/physiology , Exocrine Glands/physiology , Female , Male , Microscopy, Confocal/methods , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/physiology , Rats , Rats, Wistar , Voltage-Sensitive Dye Imaging/methods
4.
Journal of Rhinology ; : 113-117, 1999.
Article in English | WPRIM | ID: wpr-174501

ABSTRACT

BACKGROUND AND OBJECTIVES: Heat shock proteins (HSPs) are group of evolutionary conserved proteins whose synthesis are greatly enhanced in cells following exposure to various stressors and play an important role in cellular protection and survival. The purpose of this study was to determine whether olfactory stimulation induces the synthesis of HSP72 in olfactory system of the rat. MATERIALS AND METHODS: Animals were exposed to odorant stimuli using 2% propionic acid odorant stimuli and expression pattern of HSP72 in the olfactory system were detected by immunohistochemistry using anti-HSP72 antibody according to time course and by Western blotting. RESULTS: HSP72 immunopositive cells were expressed in the olfactory epithelium and in the olfactory bulb neurons and a 72 kD band was detected by Western blotting. CONCLUSION: These results suggest that expression of HSP72 in olfactory system of the rat following exposure to odor may serve as a marker for cellular stress and potential damage and may be involved in cellular protection against injuries.


Subject(s)
Animals , Rats , Blotting, Western , Diethylpropion , Heat-Shock Proteins , Hot Temperature , HSP72 Heat-Shock Proteins , Immunohistochemistry , Neurons , Odorants , Olfactory Bulb , Olfactory Mucosa
5.
Acta Anatomica Sinica ; (6)1955.
Article in Chinese | WPRIM | ID: wpr-573633

ABSTRACT

Objective To investigate features and significance of the temporal and spatial expression of GFAP and Vimentin in olfactory system of Xenopus from metamorphosis to adult. Methods Xenopus tadpoles from stage 48 to 63 were made into serial sections(20??m)by Cryostat,each contains the nose,the olfactory nerve,and the olfactory bulb.The immunohistochemistry staining was done on these sections by anti-GFAP and anti-Vimentin,and then observed by fluorescence microscope.Results Olfactory nerve showed very strongly GFAP-IR staining during metamophosis of Xenopus.In the olfactory bulb,GFAP-IR positive staining was found only in the nerve layer,but not in glomeruli.By contrast,Vimentin-IR decorated radial glia in the olfactory bulb but faintly stained the olfactory nerve.Conclusion GFAP and Vimentin present complementary staining patterns,GFAP is expressed in the peripheral olfactory system while vimentin is expressed in the central part of olfactory system.

SELECTION OF CITATIONS
SEARCH DETAIL